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Abstract 

A scalar theory of gravitation is developed from a variational principle. The speed of 
light is taken to be a function of the potential of the gravitational field. The predictions 
of the light deflection and the advancement of the perihelion agree with those made by 
Einstein's theory. The gravitational (active) mass differs from the inertial (passive) mass 
and both are dependent on the gravitational potential. 

1. Introduction 

The most serious objection raised against scalar theories of gravitation 
has been the inability to correctly predict the light deflection. Indeed, in the 
class of generalised NordstrOm theories considered by Whitrow & Murdoch 
(1965) it is shown that the perihelion advancement may be reproduced but 
not the light deflection. In addition to these Lorentz covariant theories, 
Whitrow and Murdoeh also considered theories with a variable speed of 
light although their treatment was not consistent from the point of view of  
either tensor calculus or field theory. The idea of a variable speed of light 
is not new, Einstein (1911) had considered it. Rosen (1940) considered a 
flat-space interpretation in which the speed of light was dependent on the 
'scalar' component of the gravitational field. If one accepts the hypothesis 
of the variability of the speed of light, in particular that it depends on the 
gravitational field, then it is consistent with electromagnetic theory to 
consider the light deflection simply as the refraction through a medium 
with the appropriate index of refraction. It is a simple matter to show that the 
speed of light must be proportional to 1 minus twice the magnitude of the 
Newtonian potential in order that an application of Fermat's principle 
should give a result agreeing with the prediction of general relativity. The 
testability of this hypothesis is on the boundaries of the limits of present 
technology. An earth-based laboratory would record a variation in the 
speed of light by 2/3 parts in 109 in the course of the annual motion. 
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According to Froome & Essen (1965) one can measure the speed of light 
to an accuracy of 1 part in 108 with present-day technology. A satellite in 
a highly eccentric solar orbit would deliver far better results. One of the 
first scalar theories of gravitation was developed by NordstrOm (1912). 
This theory and the theory of Bergmann (1956) have been discussed in a 
previous article (Lindrn, 1971). An historical account of this very active 
period in the development of gravitational theories has been given by Guth 
(1970). The principal features of Nordstr0m's first theory are: (1) global 
Lorentz invariance (constant speed of light), (2) the field satisfies a wave 
equation and (3) the four-force acting on a body is proportional to the 
four-gradient of the potential and Newton's law of motion is generalised 
to a four-dimensional description. The second theory of NordstrOm (1913) 
is also globally Lorentz invariant, however, the field equation is altered in 
that the D'Alembertian operator is multiplied (from the left) by the field 
and the four-force is now given by the product of the trace of the energy- 
momentum tensor of matter and the four gradient of the logarithm of the 
field. Abraham (1914) considered two locally Lorentz invariant theories 
of gravitation. In the first theory (Abraham, 1912a)--which preceded 
NordstrOm's first theory--the equations of motion and the field equation 
are the same as the first NordstrOm theory except the speed of light is not 
constant but is related to the field by a formula similar to the one hypothe- 
sised by Einstein (1911). In the second theory of Abraham (1912b), which 
also preceded the first theory of NordstrOm, the field quantity is the square 
root of the speed of light. This field quantity satisfies a Klein-Gordon type 
equation with the 'field-stiffness' (the mass term in the Klein-Gordon 
equation) given by the rest mass density of matter. The four-force is the 
gradient of the speed of light. In both of these theories, the light deflection 
is only half of the amount predicted by general relativity. 

In the present paper, a scalar theory of gravitation is developed which is 
related to the acknowledged papers in content and to the paper of Bergmann 
(1956) in method. Thirring (t961) also pursued the field-theoretic approach 
although he emphasised a two-tensor theory. 

2. The FieM Equations 

The gravitational field is taken to be described by a scalar potential. It is 
further hypothesised that the speed of light depends on the field. The nature 
of this dependence is for the time being left unspecified. We should like to 
formulate a variational principle from which the equations of motion and 
the field equations follow by performing the appropriate variations. We 
thus require a Lagrangian density. This Lagrangian must consist of three 
terms, the free field term, the free particle term and the interaction term. 
The free particle term and the free field term we know how to construct if 
we prescribe how the equations of motion are to be parametrised (i.e. 
whether the equations of motion should follow from the variation of 

ds or j" &- where s is the world distance and ~- the proper time). I see no 
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a priori reason for choosing one or the other, apart from the fact that 
intuition prefers r. We shall, however, choose s as the fundamental para- 
meter. In Bergmann's (1956) theory it makes no difference since his action 
is invariant under the (twice-differentiable) class of transformations 
)t ~ A(s). The Lagrangian we shall choose (as Thirring's (1961)) is only 
invariant under the one parameter group of translations s ~ s + a. There 
remains only the interaction term. In a previous paper, Lind6n (1971), an 
argument was presented to the effect that the interaction term should be a 
product of the mass density and an expression quadratic in the potential. 
It is through the linear term that sources of the field are provided. The 
linear term also provides the mechanism for dependence of inertial 
(passive) mass upon the field. The quadratic term provides a mechanism for 
the dependence of gravitational (active) mass upon the field. We are thus 
in a position to state the Lagrangian density. 

= �89 ~i q~J + 4fro: f dsg,le' ~Jp(x', z')(1 + fl~(x')) 2 (2.1) 

The constant ~ and the coupling constant fl will be determined by com- 
parison with Newton's equations of motion. 

In equation (2.1) the metric tensor is a function of qs. In a Cartesian 
coordinate system we have in particular that 

g ~ = d i a g ( c 2 , - 1 , - 1 , - 1 )  (2.2) 

where c is a function of �9 to be described shortly. A dot over a symbol 
denotes differentiation with respect to s and q)j = 0j ~.  The quantity p is 
the density distribution of matter times x / -g ,  so that for a point source p 
would simply be the product of four delta functions. The action functional 
is defined by 

d = | d 4 x ~  (2.3) 
~2 

If this action is to be stationary, then the variation 

�9 ~ ( P + 8 ~  (2.4) 

where 8# is an arbitrary function vanishing on the hypersurface 0~, leads 
to the Euler-Lagrange equation 

- -  1_ O V ( - - g )  g l j  ~7~f tT~ j di(~c/(-g)giJqbJ) 2 Oqb 

= f a p(x', z')e'eJ  [(1 + j] (2.5) 

where 

d 0 +@io ~ di -- dx l - Ox ~ 
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Thus equation (2.5) may be written 

1 a V(-g) gl~,n 
Oi(V(-g)gi~#J) + ~ U4 ~" q~J 

f dsp(x i, I..~ .j 0 47ro: z )z z ~ [ ( 1  + flq))Z gu] (2.6) 

Now, if (2.6) is divided by a / - g  then the first term is the D'Alembert 
operator acting q~. The second term is the energy density of the field. We 
conclude this section with the presentation of  (2.6) in special coordinate 
systems, viz. those in which the metric tensor takes the form 

gu = diag (c 2 , -h i  2 , -h2 2, -h3 2) (2.7) 

where the quantities hi are known as scale factors. Equation (2.6) then 

=8,~.~c- 'n  f dsp[l + ~+ + 

becomes 

Now if we choose 

(1 + co, [a, y1 (2.8) 
~,ds] .I 

then (2.8) may be written 

c = exp (-2fl~) (2.9) 

j=2exp(-fl+)=-8~r~2exp(flq~) f dtpc J ( l - ~ )  

2(1 + fl#)2] 
• [(1 + fltp) i - - v ~  ] 

[~2 10 {10"~ V2 
= c gt ~, c ~t ] - 

where 

(2.10) 

the integration variable has been changed to t. Further, if the time depen- 
dence of  p is a delta function then 

JVq2 exp (-fl~) = -87r~f12 p(x', z'(t)) J ( 1 -  ~)  

2(1 + fi~)2] . . . .  
x [1 +flgi 1--  v - - ~  jexpt-/~u,) (2.11) 

If  we suppose that P is the mass distribution of  a single particle whose 
coordinates of the centre of  mass are Z i and its velocity, v, is zero, then 
equation (2.11) becomes 

JE] 2 exp (-flqS) = 87r~f12 p(x ~, zi)(1 + 2fl~)(1 + flq~) exp (--tiP) (2.12) 
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and for a static field we have 

JV  2 exp ( - f l~)  = -87r~fl 2 p(x ~, z~)(1 + 2fl~b)(1 + fl~) exp ( - f l~)  (2.13) 

We shall see in Section 4 that a comparison with the Newtonian equation 
of orbits requires that 2c~f l  2 = - M G .  The active mass of a body is thus seen 
in part to derive from the field of all other masses. Equation (2.11) tells us 
that it is also dependent on the state of  its motion. When p is allowed to 
approach a delta function, we suppose the limiting procedure to be so taken 
that (2.13) becomes 

V 2 exp (-fl~b) = -8~r~/32 33(x ' - z') (2.14) 

If  we wish to use (2.14) to compute the field of the earth, for example, we 
must bear in mind that to the lowest order the active mass of the earth is 
proportional to 1 + 2fl@ o, where q)o is the solar potential, as can be read 
offfrom the right side of (2.13). This will be considered further in Section 4. 

Aside from the terms (1 + 2fl~b)(1 +/3~b) equation (2.13) is identical to 
the field equation in the second theory of  Abraham (1914). 

3. Equations of  Motion 

The variation 
z ~ -+ z ~ + 3z i (3.1) 

where 3z ~ is a function required to vanish at the end points sl and s2, leads 
to the Euler-Lagrange equations, 

d ~ ~ j 1 0  ~ ~ j k  
~ (~r )~ ) = } ~qzi (dt'(z)g~k(z ))~ ~ (3.2) 

where 

By defining 

where 

,./g(z l) ---- f d4 xp(x ~, z~)(1 + fl~(xl)) 2 
D 

mlj = ~//(z ~) g~j (3.3a) 

miJ = g~J 
~/t,(z~) (3.3b) 

l"]k = �89 + ajmrk - a, mjk) 

= jk  + (~S~akdg+3k~aJ"gl--gJkg~rO~g) (3.3C) 

1 lr 
{jk} = �89 (OkgrJ -}- OJgrk-- OrgJk) (3.3d) 
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the equations of motion (3.2) may be written 

U + FJk#~ ~ = 0 (3.4a) 

It is tempting to interpret (3.4) as an equation for geodesics. It is true that 
it is a geodesic equation for a manifold with the fundamental form given by 

ds 2 = m~j dx I d #  

however, the metric tensor by which indices are lowered and raised is in 
fact g~. Introducing the expression for -Pjk from (3.3c), (3.4) becomes 

{i  } ~j :~k = ( ~ k  _ �89 O~ l n ~  (3.4b) z~ + j k  

We see from (3.4b) that the motion of a particle is such that it proceeds 
along a geodesic path unless acted upon by a field, i.e. that the gradient of 
dr' differs from zero. This generalisation of Newton's law of motion also 
requires this motion to be rectilinear since a vanishing of the gradient 
implies that g~z is independent of ~ (or in any event ~ = constant) so that 
the space becomes pseudo-Euclidean and thus the motion of material 
particles must be along straight lines, the geodesics of this geometry. 

We should say something regarding the status of the equivalence principle 
in the strong and weak forms in this theory. By the strong principle one 
usually means the covariancy of the equations. The weak principle means 
that the equations of motion are independent of mass. We see from (3.2) 
that the equations of motion will be independent of some dimensional 
factor called mass, but not the structure of matter. This would mean a 
violation, in principle, of the EOtvSs experiments. However, for the objects 
used in these experiments, qb is essentially a constant, as regards the defini- 
tion o f~ ' ,  so that for such objects the weak principle will be satisfied. The 
general covariancy of the equations guarantees that the strong principle is 
satisfied. We must thus conclude that the weak form of the equivalence 
principle is logically disjointed from the strong form of the equivalence 
principle, since this theory satisfies the latter but not the former. 

4. The One-Body Problem 

It is the purpose of this section to evaluate the constants of this theory 
by comparing with the Newtonian orbits. We make the following simplifying 
assumptions. The attraction centre is fixed in space and is describable by 
a delta function. The body whose motion we wish to compute is also 
describable by a delta function. We also take the attraction centre to be 
spherically symmetric. With these assumptions the field equation (2.10) 
reduces to 

d [ 2 dexp (-fltb)\ _ -8  ,,2 3(r) (4.1) 
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is 
The solution to (4.1) satisfying the proper boundary condition at infinity 

exp (-fl~b)= 1 + 2~fl----~2 (4.2) 
r 

The gradient of the field is 

fl_d7 =d~b 2~f12r exp (fl~) (4.3) 

If the terms quadratic in the field are neglected we find from (4.2) that 

2~fl z ~ ~ - _ _  

r 
(4.4) 

so that (2.8) to the first order reads 
C = 1 -[- 4~fl2 

r 
(4.5) 

The equations of motion are comprised of two conservation laws and 
an orbit equation. We consider the motion to be planar. The conservation 
of energy follows from the first equation of (3.1) viz., 

(4.6) 

which when integrated may be written 

dt E 

ds (l+fl~)Zc2 
(4.7) 

o r  

E = (1 + fl~)2 c 2 dt  dt 
ds ~ C ~s 

Now using the definition of the line element then to this order we have 

E = (1 - vZ~ -1/ac=] g lc = (c 2 + �89 (4.8) 

The conservation or orbital angular momentum follows from the equation 

-- d[2(1 + fl~)2r2~-~] = 0 (4.9) 

which when integrated gives 

de h 
= (1"-~ ~(~))2 r z (4 .10)  
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The radial equation is 

d[2(l + fiqb)2~sJ= 2(l + flqb)fl~ + (l + flq5)2 

[2cc, dO {dt]2 {dqg]2] (4.11) 
• [ -Jr \Yss] - 2r \ Z s !  ] 

By changing the independent variable to ~ through the 

dr drdq~ h dr 
ds dq~ds (1 +fl~b)ZrZd$ (4.12) 

and substituting from (4.7) and (4.10) into (4.11) we obtain 

+ = 1 +flq~ 2EZexp-(4flq~)] (1 +flqb)ZrZfldrfi (4.13) 
(1+ ~ )  ~ I h 2 dr 

which to the first order becomes, after substituting from (4.3), 

+ r = -  1 - k2E~K1- 1 + 3) ~ - -  ] ~ (4.14) 

By comparing with Newton's law &attraction we see that 

MG =-2cq32(2E 2 -  1) 

Thus we may choose 
= --}M 

and 

Thus (4.14) reads 

where 

/t = v ' a  

1 = (1 + v(E) MG] MG 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

1 {4E2-1 ) 
v(E) = ~ 2  _-K~ l~2---~f + 3 (4.19) 

If terms of the order v2/c z are neglected then v = 6 and equation (4.18) 
may be written 

(~ )"+(1  6MZG2'~I=MGh z , r h z (4.20) 

The solution to (4.20) is seen to be 

MG ~ ) (~_  9~0)] (4.21) rl h2[ 1 _(~GZ/h2)][1 + e c o s ; ( 1  6MZG2 

Equation (4.21) represents an ellipse in which the longitude of perihelion 
is seen to advance 3M 2 GZ/h z per revolution. This is the same value as 
predicted by Einstein's theory. 
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For an observer on the earth he will measure the speed of light as given 
by (2.8) which may be written 

2 M G  
c(r) - -  1 - - -  (4.22) 

r 

Thus, Fermat's principle requires that 

f ~/(r,2 + 2 8 c(r) r )d~ = 0 (4.23) 

which leads to the Euler-Lagrange equation 

c ' (u) ,  ,2 
u" + u = - c(u) tu + u 2) (4.24) 

where u = 1/r. A zeroeth order solution to this equation is 

1 
u = ~cos  6 (4.25) 

where R is the radius at the limb of the sun. The next higher order solution is 

1(  ~ - )  2M2 G2(cos~ + ~) (4.26) u=~ cos~+ + ~  

Thus, the light ray is deflected through an angle 4MG/R .  This is the same 
prediction as made by Einstein. 

The same result could have been arrived at from different considerations. 
The line element for the present is 

~ d s  2 = c 2 ( r ) d t  2 - d r  2 - r2  dcfi 2 (4.27) 

where we postulate that A = 1 for material particles and 2t = 0 for photons. 
Using the two first integrals from the equations motion, (4.7) and (4.10), 
the line element may be written in the form 

6 .2 E 2 
A T (1 + 1~(/))4 = _ ~ _ _  c 2 ( u  ' 2 + u 2) (4.28) 

If  we set A = 0 and differentiate with respect to 6 we obtain (4.24), thus a 
light ray is a path of null distance. 

5. Summary  and Consequences 

How does one construct a massless scalar field when the metric tensor 
depends on the scalar field, such that a vanishing of the scalar field implies a 
Minkowskian metric? This question has been answered and a tenable 
theory of gravitation is the result. 

The constants ~ and fl were not uniquely determined but only the product 
~/32. We could have chosen/3 = 1, for example, so that c, would be the 
gravitational radius (MG/Co 2 in conventional units). This is apparent, as 
well, from the postulated form of the Lagrangian density. The coupling of 
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this scalar field to the electromagnetic field (which will be presented in a 
future paper) does not further restrict these constants since it would mean 
simply a readjustment of the electromagnetic coupling constant. 

The motion of material particles was seen to be governed by an equation 
which resembled in form the usual equation of geodesics of  a Riemann 
manifold. I t  is, however, not a geodesic since the affine connection is not 
derived from the natural metric tensor. This situation cannot be remedied 
by introducing a new parameter for the world distance since the action 
principle is not invariant under general transformations but only the 
constant translation group. This error has been made by Thirring (1961) 
and Sexl (1967). 

We may interpret the term (1 + flq~)2 as the contribution to the inertial 
mass due to the presence of other bodies. The gravitational mass of  a body 
is to the lowest order proportional to 1 - 2fl~b. This means that the earth's 
gravitational field should vary by 2/3 parts in 109 in the course of  its annual 
motion about the sun. This means, for example, that the radius of  a 30,000 
km radius circular satellite orbit would vary about 2 cm. These types of  
effects will be considered in a future paper  in regard to the ea r th -moon  
dynamics. The main result is that a light signal bounced off the moon  
shows a two nanosecond difference between aphelion and perihelion. 
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